Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569183

RESUMO

Standard-of-care treatment regimens have long been designed for maximal cell killing, yet these strategies often fail when applied to metastatic cancers due to the emergence of drug resistance. Adaptive treatment strategies have been developed as an alternative approach, dynamically adjusting treatment to suppress the growth of treatment-resistant populations and thereby delay, or even prevent, tumor progression. Promising clinical results in prostate cancer indicate the potential to optimize adaptive treatment protocols. Here, we applied deep reinforcement learning (DRL) to guide adaptive drug scheduling and demonstrated that these treatment schedules can outperform the current adaptive protocols in a mathematical model calibrated to prostate cancer dynamics, more than doubling the time to progression. The DRL strategies were robust to patient variability, including both tumor dynamics and clinical monitoring schedules. The DRL framework could produce interpretable, adaptive strategies based on a single tumor burden threshold, replicating and informing optimal treatment strategies. The DRL framework had no knowledge of the underlying mathematical tumor model, demonstrating the capability of DRL to help develop treatment strategies in novel or complex settings. Finally, a proposed five-step pathway, which combined mechanistic modeling with the DRL framework and integrated conventional tools to improve interpretability compared to traditional "black-box" DRL models, could allow translation of this approach to the clinic. Overall, the proposed framework generated personalized treatment schedules that consistently outperformed clinical standard-of-care protocols.

2.
Nat Ecol Evol ; 8(1): 147-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012363

RESUMO

Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK-JunB-p21 signalling to enforce drug dependence. We identified the optimal scheduling of 'drug holidays' using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.


Assuntos
Melanoma , Transtornos Relacionados ao Uso de Substâncias , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
4.
Commun Med (Lond) ; 2: 46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603284

RESUMO

Background: Adaptive therapy aims to tackle cancer drug resistance by leveraging resource competition between drug-sensitive and resistant cells. Here, we present a theoretical study of intra-tumoral competition during adaptive therapy, to investigate under which circumstances it will be superior to aggressive treatment. Methods: We develop and analyse a simple, 2-D, on-lattice, agent-based tumour model in which cells are classified as fully drug-sensitive or resistant. Subsequently, we compare this model to its corresponding non-spatial ordinary differential equation model, and fit it to longitudinal prostate-specific antigen data from 65 prostate cancer patients undergoing intermittent androgen deprivation therapy following biochemical recurrence. Results: Leveraging the individual-based nature of our model, we explicitly demonstrate competitive suppression of resistance during adaptive therapy, and examine how different factors, such as the initial resistance fraction or resistance costs, alter competition. This not only corroborates our theoretical understanding of adaptive therapy, but also reveals that competition of resistant cells with each other may play a more important role in adaptive therapy in solid tumours than was previously thought. To conclude, we present two case studies, which demonstrate the implications of our work for: (i) mathematical modelling of adaptive therapy, and (ii) the intra-tumoral dynamics in prostate cancer patients during intermittent androgen deprivation treatment, a precursor of adaptive therapy. Conclusion: Our work shows that the tumour's spatial architecture is an important factor in adaptive therapy and provides insights into how adaptive therapy leverages both inter- and intra-specific competition to control resistance.

5.
Cancer Res ; 81(4): 1135-1147, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33172930

RESUMO

Adaptive therapy seeks to exploit intratumoral competition to avoid, or at least delay, the emergence of therapy resistance in cancer. Motivated by promising results in prostate cancer, there is growing interest in extending this approach to other neoplasms. As such, it is urgent to understand the characteristics of a cancer that determine whether or not it will respond well to adaptive therapy. A plausible candidate for such a selection criterion is the fitness cost of resistance. In this article, we study a general, but simple, mathematical model to investigate whether the presence of a cost is necessary for adaptive therapy to extend the time to progression beyond that of a standard-of-care continuous therapy. Tumor cells were divided into sensitive and resistant populations and we model their competition using a system of two ordinary differential equations based on the Lotka-Volterra model. For tumors close to their environmental carrying capacity, a cost was not required. However, for tumors growing far from carrying capacity, a cost may be required to see meaningful gains. Notably, it is important to consider cell turnover in the tumor, and we discuss its role in modulating the impact of a resistance cost. To conclude, we present evidence for the predicted cost-turnover interplay in data from 67 patients with prostate cancer undergoing intermittent androgen deprivation therapy. Our work helps to clarify under which circumstances adaptive therapy may be beneficial and suggests that turnover may play an unexpectedly important role in the decision-making process. SIGNIFICANCE: Tumor cell turnover modulates the speed of selection against drug resistance by amplifying the effects of competition and resistance costs; as such, turnover is an important factor in resistance management via adaptive therapy.See related commentary by Strobl et al., p. 811.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Antagonistas de Androgênios , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
6.
Bull Math Biol ; 82(1): 15, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953602

RESUMO

Invasion of healthy tissue is a defining feature of malignant tumours. Traditionally, invasion is thought to be driven by cells that have acquired all the necessary traits to overcome the range of biological and physical defences employed by the body. However, in light of the ever-increasing evidence for geno- and phenotypic intra-tumour heterogeneity, an alternative hypothesis presents itself: could invasion be driven by a collection of cells with distinct traits that together facilitate the invasion process? In this paper, we use a mathematical model to assess the feasibility of this hypothesis in the context of acid-mediated invasion. We assume tumour expansion is obstructed by stroma which inhibits growth and extra-cellular matrix (ECM) which blocks cancer cell movement. Further, we assume that there are two types of cancer cells: (i) a glycolytic phenotype which produces acid that kills stromal cells and (ii) a matrix-degrading phenotype that locally remodels the ECM. We extend the Gatenby-Gawlinski reaction-diffusion model to derive a system of five coupled reaction-diffusion equations to describe the resulting invasion process. We characterise the spatially homogeneous steady states and carry out a simulation study in one spatial dimension to determine how the tumour develops as we vary the strength of competition between the two phenotypes. We find that overall tumour growth is most extensive when both cell types can stably coexist, since this allows the cells to locally mix and benefit most from the combination of traits. In contrast, when inter-species competition exceeds intra-species competition the populations spatially separate and invasion arrests either: (i) rapidly (matrix-degraders dominate) or (ii) slowly (acid-producers dominate). Overall, our work demonstrates that the spatial and ecological relationship between a heterogeneous population of tumour cells is a key factor in determining their ability to cooperate. Specifically, we predict that tumours in which different phenotypes coexist stably are more invasive than tumours in which phenotypes are spatially separated.


Assuntos
Modelos Biológicos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Ácidos/metabolismo , Movimento Celular/fisiologia , Simulação por Computador , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Glicólise , Humanos , Conceitos Matemáticos , Metaloproteinases da Matriz/metabolismo , Fenótipo , Células Estromais/patologia , Células Estromais/fisiologia , Microambiente Tumoral/fisiologia
7.
Biomed Eng Online ; 18(1): 51, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053071

RESUMO

BACKGROUND: Avoidance to look others in the eye is a characteristic symptom of Autism Spectrum Disorders (ASD), and it has been hypothesised that quantitative monitoring of gaze patterns could be useful to objectively evaluate treatments. However, tools to measure gaze behaviour on a regular basis at a manageable cost are missing. In this paper, we investigated whether a smartphone-based tool could address this problem. Specifically, we assessed the accuracy with which the phone-based, state-of-the-art eye-tracking algorithm iTracker can distinguish between gaze towards the eyes and the mouth of a face displayed on the smartphone screen. This might allow mobile, longitudinal monitoring of gaze aversion behaviour in ASD patients in the future. RESULTS: We simulated a smartphone application in which subjects were shown an image on the screen and their gaze was analysed using iTracker. We evaluated the accuracy of our set-up across three tasks in a cohort of 17 healthy volunteers. In the first two tasks, subjects were shown different-sized images of a face and asked to alternate their gaze focus between the eyes and the mouth. In the last task, participants were asked to trace out a circle on the screen with their eyes. We confirm that iTracker can recapitulate the true gaze patterns, and capture relative position of gaze correctly, even on a different phone system to what it was trained on. Subject-specific bias can be corrected using an error model informed from the calibration data. We compare two calibration methods and observe that a linear model performs better than a previously proposed support vector regression-based method. CONCLUSIONS: Under controlled conditions it is possible to reliably distinguish between gaze towards the eyes and the mouth with a smartphone-based set-up. However, future research will be required to improve the robustness of the system to roll angle of the phone and distance between the user and the screen to allow deployment in a home setting. We conclude that a smartphone-based gaze-monitoring tool provides promising opportunities for more quantitative monitoring of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Movimentos Oculares , Smartphone , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
8.
Mol Phylogenet Evol ; 101: 46-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27150349

RESUMO

Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry.


Assuntos
Simulação por Computador , Transição de Fase , Filogenia , Temperatura , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...